When mixing makes frothing

In the frame of PIC lab (Laboratoire Commun Total/ESPCI/CNRS/Sorbonne Université) SIMM researchers explain for the first time a long-known effect: the formation of froths, i.e. foams with lifetimes of a few seconds, in mixtures of liquids. In everyday life, this effect is generally observed in oil mixtures, such as gasoline or frying oils. In contrast, pure oils do not foam because liquid films between bubbles thin down and break up so quickly that bubbles cannot be seen with the naked eye. In some liquid mixtures, film drainage is greatly slowed down, allowing the observation of froths. This effect has been measured and a quantitative explanation has been provided for it, based on the simple assertion that bulk and surface concentrations in each species slightly differ in the liquid films. This work in particular offers perspectives on the improvement of lubricants for electric cars, in which foaming is a major concern.

The publication has been selected as one of Editor’s Suggestions by Physical Review Letters and has been the object of a communication by CNRS and the American Physical Society.


See also...

Oxidation-Responsive Emulsions Stabilized by Cleavable Metallo-Supramolecular Crosslinked Microgels

A recent paper from the Colloids, Assemblies and Interfacial Dynamics team (CAID team) reports on an original route to destabilize emulsions by (...) 

> More...

Role of Dynamical Heterogeneities on the Mechanical Response of Confined Polymer

Polymer near their glassy transition are known to exhibit dynamical heterogeneities. By “dynamical heterogeneities” one means that local relaxation (...) 

> More...


Practical information

Sciences et Ingénierie de la Matière Molle

Soft Matter Enginering and Science Laboratory - UMR 7615

10 rue Vauquelin
75231 PARIS CEDEX 05

  • Chair : E. Barthel
  • Vice Chairs : J.B. d’Espinose & G. Ducouret
  • Administration : F. Decuq, M.-T. Mendy & M. Hirano-Courcot
  • Communication : A. Hakopian & M. Ciccotti
  • Information Technology : A. Hakopian
  • Safety, Health and Environment Assistant : F. Martin

Getting here