Van der Waals forces modify the fluctuations of the surface of a liquid film

This effect has been measured in collaboration between SIMM, SVI (Saint-Gobain-CNRS) and LOMA (Univ. Bordeaux)

As a result of thermal motion, the free surface of any liquid film fluctuates and the amplitude of its height fluctuations (less than 1nm!) are ruled by viscous and capillary effects. When the film is spread on a solid substrate and its thickness is smaller than about 100 nm, the fluctuation amplitudes are modified by the intermolecular forces. Quantitative predictions of this effect were made in the past decades but, up to date, it had not been fully measured. Using a dedicated experimental set-up we were able to form and measure the surface fluctuations of ultra-thin liquid films. The capillary spectra spanning three decades in frequency are in excellent agreement with theoretical predictions accounting for van der Waals forces. Our results emphasize the relevance of considering the effect of intermolecular forces on thermal fluctuations, which play a central role in phenomena such as drop formation, film break-up or dewetting.

C. Clavaud, M. Maza-Cuello, C. Frétigny, L. Talini, and T. Bickel
Phys. Rev. Lett. 126, 228004

Top



See also...

Le frottement des caoutchoucs dépend de leur déformation

Dans un article récemment paru dans Soft Matter, nous montrons que le frottement local d’élastomères silicones sur des surfaces lisses de verre est (...) 

> More...

Interplay between silicate and hydroxide ions during geopolymerization

Geopolymer is a low environmental impact binder obtained from clay or industrial by-products. However, to be a realistic competitor to the (...) 

> More...

 

Practical information

Sciences et Ingénierie de la Matière Molle

Soft Matter Enginering and Science Laboratory - UMR 7615

10 rue Vauquelin
75231 PARIS CEDEX 05
FRANCE

  • Chair : E. Barthel
  • Vice Chairs : J.B. d’Espinose & G. Ducouret
  • Administration : F. Decuq, M.-T. Mendy & M. Hirano-Courcot
  • Communication : A. Hakopian & M. Ciccotti
  • Information Technology : A. Hakopian
  • Safety, Health and Environment Assistant : F. Martin

Getting here