Mechanics of elastomeric molecular composites

A classic paradigm of soft and extensible polymer materials is the difficulty of combining reversible elasticity with high fracture
toughness, in particular for moduli above 1 MPa. Our recent discovery of multiple network acrylic elastomers opened a pathway to obtain precisely such a combination. We show here that they can be seen as true molecular composites with a well–cross-linked network acting as a percolating filler embedded in an extensible matrix, so that the stress–strain curves of a family of molecular composite materials made with different volume fractions of the same cross-linked network can be renormalized into a master curve. For low volume fractions (<3%) of cross-linked network, we demonstrate with mechanoluminescence experiments that the elastomer undergoes a strong localized softening due to scission of covalent bonds followed by a stable necking process, a phenomenon never observed before in elastomers. The quantification of the emitted luminescence shows that the damage in the material occurs in two steps, with a first step where random bond breakage occurs in the material accompanied by a moderate level of dissipated energy and a second step where a moderate level of more localized bond scission leads to a much larger level of dissipated energy. This combined use of mechanical macroscopic testing and molecular bond scission data provides unprecedented insight on how tough soft materials can damage and fail.


See also...

Gaëlle Rondepierre, a PhD student of the SIMM, winner of the French Rising Talents L’Oréal-Unesco For Women In Science Award

Gaëlle Rondepierre, a 3rd year PhD student in the lab, is one of the 35 winners of the 2020 French Rising Talents L’Oreal-Unesco For Women In (...) 

> More...

Interplay between silicate and hydroxide ions during geopolymerization

Geopolymer is a low environmental impact binder obtained from clay or industrial by-products. However, to be a realistic competitor to the (...) 

> More...


Practical information

Sciences et Ingénierie de la Matière Molle

Soft Matter Enginering and Science Laboratory - UMR 7615

10 rue Vauquelin
75231 PARIS CEDEX 05

  • Chair : E. Barthel
  • Vice Chairs : J.B. d’Espinose & G. Ducouret
  • Administration : F. Decuq, M.-T. Mendy & M. Hirano-Courcot
  • Communication : A. Hakopian & M. Ciccotti
  • Information Technology : A. Hakopian
  • Safety, Health and Environment Assistant : F. Martin

Getting here