Contact of a spherical probe with a stretched rubber substrate

In a recently published paper, we report on a theoretical and experimental investigation of the normal contact of stretched neo-Hookean substrates with rigid spherical probes. Starting from a published formulation of surface Green’s function for incremental displacements on a pre-stretched, neo-Hookean, substrate (L.H. Lee \textitJ. Mech. Phys. Sol. \textbf56 (2008) 2957-2971), a model is derived for both adhesive and non-adhesive contacts. The shape of the elliptical contact area together with the contact load and the contact stiffness are predicted as a function of the in-plane stretch ratios $\lambda_x$ and $\lambda_y$ of the substrate. The validity of this model is assessed by contact experiments carried out using an uniaxally stretched silicone rubber. For stretch ratio below about 1.25, a good agreement is observed between theory and experiments. Above this threshold, some deviations from the theoretical predictions are induced as a result of the departure of the mechanical response of the silicone rubber from the neo-Hokeean description embedded in the model.


Haut de page



À lire aussi...

Le frottement des caoutchoucs dépend de leur déformation

Dans un article récemment paru dans Soft Matter, nous montrons que le frottement local d’élastomères silicones sur des surfaces lisses de verre est (...) 

> Lire la suite...

Dual Marangoni effects and detection of traces of surfactants

In an article recently published in Soft Matter Journal, we report controlled and tunable Marangoni flows resulting from concentration gradients (...) 

> Lire la suite...

 

Informations Pratiques

Sciences et Ingénierie de la Matière Molle - UMR 7615

10 rue Vauquelin
75231 PARIS CEDEX 05

  • Directeur : E. Barthel
  • Directeur adjoint : J.B. d’Espinose
  • Directrice adjointe : G. Ducouret
  • Pôle gestion : F. Decuq, M.-T. Mendy et M. Hirano-Courcot
  • Communication : A. Hakopian et M. Ciccotti
  • Systèmes d’information : A. Hakopian
  • Assistant prévention : F. Martin

Comment venir ?